The Prime Number Theorem - MIT Mathematics
math.mit.edu › research › highschoolDec 06, 2020 · Riemann (1859): On the Number of Primes Less Than a Given Magnitude, related ˇ(x) to the zeros of (s) using complex analysis Hadamard, de la Vallée Poussin (1896): Proved independently the prime number theorem by showing (s) has no zeros of the form 1 + it, hence the celebrated prime number theorem
Prime number theorem - Wikipedia
https://en.wikipedia.org/wiki/Prime_number_theoremBased on the tables by Anton Felkel and Jurij Vega, Adrien-Marie Legendre conjectured in 1797 or 1798 that π(a) is approximated by the function a / (A log a + B), where A and B are unspecified constants. In the second edition of his book on number theory (1808) he then made a more precise conjecture, with A = 1 and B = −1.08366. Carl Friedrich Gaussconsidered the same question at age 15 or 16 "in the year 1792 or 1793", according to his own recollection in 1849. In …
Simple Proof of the Prime Number Theorem
www-users.cse.umn.edu › ~garrett › mPaul Garrett: Simple Proof of the Prime Number Theorem (January 20, 2015) 2. Convergence theorems The rst theorem below has more obvious relevance to Dirichlet series, but the second version is what we will use to prove the Prime Number Theorem. A uni ed proof is given. [2.0.1] Theorem: (Version 1) Suppose that c nis a bounded sequence of ...