PySpark Aggregate Functions with Examples — SparkByExamples
sparkbyexamples.com › pyspark-aggregate-functionsPySpark. PySpark provides built-in standard Aggregate functions defines in DataFrame API, these come in handy when we need to make aggregate operations on DataFrame columns. Aggregate functions operate on a group of rows and calculate a single return value for every group. All these aggregate functions accept input as, Column type or column name in a string and several other arguments based on the function and return Column type.
pyspark.sql.functions — PySpark 3.2.1 documentation
spark.apache.org › pyspark › sqlThis is equivalent to the LAG function in SQL. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression offset : int, optional number of row to extend default : optional default value """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lag(_to_java_column(col ...