Python Examples of numpy.random.multivariate_normal
www.programcreek.com › python › exampledef do_plot_test(): import matplotlib.pyplot as plt from numpy.random import multivariate_normal as mnormal from filterpy.stats import covariance_ellipse, plot_covariance p = np.array([[32, 15], [15., 40.]]) x, y = mnormal(mean=(0, 0), cov=p, size=5000).T sd = 2 a, w, h = covariance_ellipse(p, sd) print(np.degrees(a), w, h) count = 0 color = [] for i in range(len(x)): if _is_inside_ellipse(x[i], y[i], 0, 0, a, w, h): color.append('b') count += 1 else: color.append('r') plt.scatter(x, y ...
numpy.random.multivariate_normal — NumPy v1.15 Manual
docs.scipy.org › doc › numpy-1Aug 23, 2018 · Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or “center”) and variance (standard deviation, or “width,” squared) of the one-dimensional normal distribution.
Python | Numpy np.multivariate_normal() method - GeeksforGeeks
www.geeksforgeeks.org › python-numpy-npOct 13, 2019 · With the help of np.multivariate_normal() method, we can get the array of multivariate normal values by using np.multivariate_normal() method. Syntax : np.multivariate_normal(mean, matrix, size) Return : Return the array of multivariate normal values. Example #1 : In this example we can see that by using np.multivariate_normal() method, we are able to get the array of multivariate normal values by using this method.
Python multivariate_normal Examples, scipystats.multivariate ...
python.hotexamples.com › examples › scipyPython multivariate_normal Examples. def _init_params (self, X): init = self.init n_samples, n_features = X.shape n_components = self.n_components if (init == 'kmeans'): km = Kmeans (n_components) clusters, mean, cov = km.cluster (X) coef = sp.array ( [c.shape [0] / n_samples for c in clusters]) comps = [multivariate_normal (mean [i], cov [i], allow_singular=True) for i in range (n_components)] elif (init == 'rand'): coef = sp.absolute (sprand.randn (n_components)) coef = coef / ...