torch.Tensor.backward — PyTorch 1.10.1 documentation
pytorch.org › generated › torchtorch.Tensor.backward. Tensor.backward(gradient=None, retain_graph=None, create_graph=False, inputs=None)[source] Computes the gradient of current tensor w.r.t. graph leaves. The graph is differentiated using the chain rule. If the tensor is non-scalar (i.e. its data has more than one element) and requires gradient, the function additionally ...
PyTorch - Wikipedia
https://en.wikipedia.org/wiki/PyTorchPyTorch uses a method called automatic differentiation. A recorder records what operations have performed, and then it replays it backward to compute the gradients. This method is especially powerful when building neural networks to save time on one epoch by calculating differentiation of the parameters at the forward pass. Optim module
Automatic differentiation package - PyTorch
https://pytorch.org/docs/stable/autograd.htmlAutomatic differentiation package - torch.autograd¶. torch.autograd provides classes and functions implementing automatic differentiation of arbitrary scalar valued functions. It requires minimal changes to the existing code - you only need to declare Tensor s for which gradients should be computed with the requires_grad=True keyword. As of now, we only support …