CrossEntropyLoss — PyTorch 1.10.1 documentation
pytorch.org › torchclass torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) [source] This criterion computes the cross entropy loss between input and target. It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a 1D ...
deep learning - How is cross entropy loss work in pytorch ...
stackoverflow.com › questions › 64221896Oct 06, 2020 · With cross entropy loss I found some interesting results and I have used both binary cross entropy loss and cross entropy loss of pytorch. import torch import torch.nn as nn X = torch.tensor ( [ [1,0], [1,0], [0,1], [0,1]],dtype=torch.float) softmax = nn.Softmax (dim=1) bce_loss = nn.BCELoss () ce_loss= nn.CrossEntropyLoss () pred = softmax (X) bce_loss (X,X) # tensor (0.) bce_loss (pred,X) # tensor (0.3133) bce_loss (pred,pred) # tensor (0.5822) ce_loss (X,torch.argmax (X,dim=1)) # tensor ...
BCELoss — PyTorch 1.10.1 documentation
pytorch.org › docs › stableBCELoss. Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities: The unreduced (i.e. with reduction set to 'none') loss can be described as: N N is the batch size. If reduction is not 'none' (default 'mean' ), then.
Pytorch常用的交叉熵损失函数CrossEntropyLoss()详解 …
22.12.2019 · Pytorch中的CrossEntropyLoss ()函数. 它是交叉熵的另外一种方式。. Pytorch中CrossEntropyLoss ()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。. 1、Softmax后的数值都在0~1之间,所以ln之后值域是负无穷到0 …