compute top1, top5 error using pytorch · GitHub
https://gist.github.com/weiaicunzai/2a5ae6eac6712c70bde0630f3e76b77bcompute top1, top5 error using pytorch Raw accuracy.py from __future__ import print_function, absolute_import __all__ = [ 'accuracy'] def accuracy ( output, target, topk= ( 1 ,)): """Computes the precision@k for the specified values of k""" maxk = max ( topk) batch_size = target. size ( 0) _, pred = output. topk ( maxk, 1, True, True)
Calculate the accuracy every epoch in PyTorch - Stack Overflow
stackoverflow.com › questions › 51503851For each example in batch returns: ' '1) the highest score for each class (most likely class) , and ' '2) the idx (=class) with that highest score') print(y_logits.max(1)) print('-- calculate accuracy --') # computing accuracy in pytorch """ random.choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array for pytorch random choice https://stackoverflow.com/questions/59461811/random-choice-with-pytorch """ import torch import torch.nn as nn in_features = 1 n ...
Accuracy — PyTorch-Ignite v0.4.8 Documentation
pytorch.org › igniteAccuracy = T P + T N T P + T N + F P + F N \text{Accuracy} = \frac{ TP + TN }{ TP + TN + FP + FN } Accuracy = TP + TN + FP + FN TP + TN where TP \text{TP} TP is true positives, TN \text{TN} TN is true negatives, FP \text{FP} FP is false positives and FN \text{FN} FN is false negatives.
Accuracy Calculation - PyTorch Metric Learning
kevinmusgrave.github.io › pytorch-metric-learningAccuracyCalculator): def calculate_precision_at_2 (self, knn_labels, query_labels, ** kwargs): return accuracy_calculator. precision_at_k (knn_labels, query_labels [:, None], 2) def calculate_fancy_mutual_info (self, query_labels, cluster_labels, ** kwargs): return fancy_computations def requires_clustering (self): return super (). requires_clustering + ["fancy_mutual_info"] def requires_knn (self): return super (). requires_knn + ["precision_at_2"]
Calculating accuracy of the current minibatch? - PyTorch Forums
discuss.pytorch.org › t › calculating-accuracy-ofJun 26, 2017 · acc = (true == pred).sum ().item () If you have a counter don’t forget to eventually divide by the size of the data-set or analogous values. I’ve used: N = data.size (0) # since usually it's size (batch_size, D1, D2, ...) correct += (1/N) * correct. Self contained code: # testing accuracy function # https://discuss.pytorch.org/t/calculating-accuracy-of-the-current-minibatch/4308/11 # https://stackoverflow.com/questions/51503851/calculate-the-accuracy-every-epoch-in-pytorch import torch ...