CrossEntropyLoss — PyTorch 1.10.1 documentation
pytorch.org › torchThe latter is useful for higher dimension inputs, such as computing cross entropy loss per-pixel for 2D images. The target that this criterion expects should contain either: Class indices in the range [ 0 , C − 1 ] [0, C-1] [ 0 , C − 1 ] where C C C is the number of classes; if ignore_index is specified, this loss also accepts this class ...
torch.nn.functional.binary_cross_entropy_with_logits ...
pytorch.org › docs › stabletorch.nn.functional.binary_cross_entropy_with_logits. Function that measures Binary Cross Entropy between target and input logits. See BCEWithLogitsLoss for details. input – Tensor of arbitrary shape as unnormalized scores (often referred to as logits). weight ( Tensor, optional) – a manual rescaling weight if provided it’s repeated to ...
How to use Soft-label for Cross-Entropy loss? - PyTorch Forums
https://discuss.pytorch.org/t/how-to-use-soft-label-for-cross-entropy-loss/7284411.03.2020 · softmax_cross_entropy_with_logits TF supports not needing to have hard labels for cross entropy loss: logits = [[4.0, 2.0, 1.0], [0.0, 5.0, 1.0]] labels = [[1.0, 0.0, 0.0], [0.0, 0.8, 0.2]] tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits) Can we do the same thing in Pytorch?. What kind of Softmax should I use ? nn.Softmax() or nn.LogSoftmax()?