Datasets & DataLoaders — PyTorch Tutorials 1.10.1+cu102 ...
pytorch.org › tutorials › beginnerDatasets & DataLoaders. Code for processing data samples can get messy and hard to maintain; we ideally want our dataset code to be decoupled from our model training code for better readability and modularity. PyTorch provides two data primitives: torch.utils.data.DataLoader and torch.utils.data.Dataset that allow you to use pre-loaded datasets as well as your own data.
torch.utils.data.dataloader — PyTorch 1.10.1 documentation
pytorch.org › torch › utilsclass DataLoader (Generic [T_co]): r """ Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset. The :class:`~torch.utils.data.DataLoader` supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning.