EmbeddingBag — PyTorch 1.10.1 documentation
pytorch.org › generated › torchEmbeddingBag also supports per-sample weights as an argument to the forward pass. This scales the output of the Embedding before performing a weighted reduction as specified by mode. If per_sample_weights is passed, the only supported mode is "sum", which computes a weighted sum according to per_sample_weights.
PyTorch - Wikipedia
https://en.wikipedia.org/wiki/PyTorchFacebook operates both PyTorch and Convolutional Architecture for Fast Feature Embedding (Caffe2), but models defined by the two frameworks were mutually incompatible. The Open Neural Network Exchange (ONNX) project was created by Facebook and Microsoft in September 2017 for converting models between frameworks. Caffe2 was merged into PyTorch at the end of March 2018.
Embedding — PyTorch 1.10.1 documentation
pytorch.org › generated › torchA simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. Parameters. num_embeddings ( int) – size of the dictionary of embeddings.