BCELoss — PyTorch 1.10.1 documentation
pytorch.org › docs › stableBCELoss. Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities: The unreduced (i.e. with reduction set to 'none') loss can be described as: N N is the batch size. If reduction is not 'none' (default 'mean' ), then.
How to use Soft-label for Cross-Entropy loss? - PyTorch Forums
https://discuss.pytorch.org/t/how-to-use-soft-label-for-cross-entropy-loss/7284411.03.2020 · softmax_cross_entropy_with_logits TF supports not needing to have hard labels for cross entropy loss: logits = [[4.0, 2.0, 1.0], [0.0, 5.0, 1.0]] labels = [[1.0, 0.0, 0.0], [0.0, 0.8, 0.2]] tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits) Can we do the same thing in Pytorch?. What kind of Softmax should I use ? nn.Softmax() or nn.LogSoftmax()?
CrossEntropyLoss — PyTorch 1.10.1 documentation
pytorch.org › torchThe latter is useful for higher dimension inputs, such as computing cross entropy loss per-pixel for 2D images. The target that this criterion expects should contain either: Class indices in the range [ 0 , C − 1 ] [0, C-1] [ 0 , C − 1 ] where C C C is the number of classes; if ignore_index is specified, this loss also accepts this class ...
How to print CrossEntropyLoss of data - autograd - PyTorch ...
https://discuss.pytorch.org/t/how-to-print-crossentropyloss-of-data/2397427.08.2018 · I’ve fixed your PyTorch code as there were some minor issues: loss = nn.CrossEntropyLoss(reduction='none') input = torch.tensor([[0.5, 1.5, 0.1], [2.2, 1.3, 1.7]], requires_grad=True) target = torch.tensor([1, 2], dtype=torch.long) print(type(input), type(target)) output = loss(input, target)