torch.nn.functional.conv2d — PyTorch 1.10.1 documentation
pytorch.org › torchLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models
Conv2d — PyTorch 1.10.1 documentation
pytorch.org › docs › stableLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models
PyTorch replace torch.nn.Conv2d with torch.nn.functional ...
stackoverflow.com › questions › 49896987Apr 18, 2018 · The problem here is that when you do a convolution on a 2D image with size (batch, in_chan, width, height), and you want an output of size (batch, out_chan, width’, height’), your weights for the convolution should be (out_chan, in_chan, width_kern_size, height_kern_size), basically when you use a kernel size of 5 for the Conv2d function ...
Conv2d — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d~Conv2d.bias – the learnable bias of the module of shape (out_channels). If bias is True , then the values of these weights are sampled from U ( − k , k ) \mathcal{U}(-\sqrt{k}, \sqrt{k}) U ( − k , k ) where k = g r o u p s C in ∗ ∏ i = 0 1 kernel_size [ i ] k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]} k = C in ∗ ∏ i = 0 1 kernel_size [ i ] g ro u p s
Function torch::nn::functional::conv2d — PyTorch master ...
pytorch.org › cppdocs › apiLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models