Multi-GPU Examples - PyTorch
pytorch.org › tutorials › beginnerMulti-GPU Examples — PyTorch Tutorials 1.10.0+cu102 documentation Multi-GPU Examples Data Parallelism is when we split the mini-batch of samples into multiple smaller mini-batches and run the computation for each of the smaller mini-batches in parallel. Data Parallelism is implemented using torch.nn.DataParallel .
How To Use GPU with PyTorch - W&B
wandb.ai › wandb › common-ml-errorsPyTorch provides a simple to use API to transfer the tensor generated on CPU to GPU. Luckily the new tensors are generated on the same device as the parent tensor. >>> X_train = X_train.to (device)>>> X_train.is_cudaTrue The same logic applies to the model. model = MyModel (args) model.to (device)