BatchNorm1d — PyTorch 1.10.1 documentation
pytorch.org › docs › stableBatchNorm1d. Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputs with optional additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift . \beta β are learnable parameter vectors of size C (where C is the input size).
InstanceNorm1d — PyTorch 1.10.1 documentation
pytorch.org › torchInstanceNorm1d is applied on each channel of channeled data like multidimensional time series, but LayerNorm is usually applied on entire sample and often in NLP tasks. Additionally, LayerNorm applies elementwise affine transform, while InstanceNorm1d usually don’t apply affine transform. Parameters num_features – C C from an expected input of size