torch.nn.functional.interpolate — PyTorch 1.10.1 documentation
pytorch.org › torchtorch.nn.functional.interpolate. Down/up samples the input to either the given size or the given scale_factor. The algorithm used for interpolation is determined by mode. Currently temporal, spatial and volumetric sampling are supported, i.e. expected inputs are 3-D, 4-D or 5-D in shape. The input dimensions are interpreted in the form: mini ...
Upsample — PyTorch 1.10.1 documentation
pytorch.org › docs › stableUpsample. Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. The input data is assumed to be of the form minibatch x channels x [optional depth] x [optional height] x width . Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor.
Captum · Model Interpretability for PyTorch
https://captum.ai/api/guided_grad_cam.htmlinterpolate_mode (str, optional) – Method for interpolation, which must be a valid input interpolation mode for torch.nn.functional. These methods are “nearest”, “area”, “linear” (3D-only), “bilinear” (4D-only), “bicubic” (4D-only), “trilinear” (5D-only) based on the number of dimensions of the chosen layer output (which must also match the number of dimensions for ...