Upsample — PyTorch 1.11.0 documentation
pytorch.org › docs › stableWith align_corners = True, the linearly interpolating modes (linear, bilinear, bicubic, and trilinear) don’t proportionally align the output and input pixels, and thus the output values can depend on the input size. This was the default behavior for these modes up to version 0.3.1. Since then, the default behavior is align_corners = False. See below for concrete examples on how this affects the outputs.
一文看懂align_corners - 知乎 - 知乎专栏
zhuanlan.zhihu.com › p › 87572724我试了一下pytorch:a = np.array (range (1, 10)).reshape (1, 1, 3, 3) pytorch_aligned = F.interpolate (torch.Tensor (a), scale_factor=2, mode='bilinear', align_corners=True) 输入的是3×3的tensor, 得到的是6×6的结果,这与上文中的5×5的结果不相同,我认为您的理解可能与pytorch的实际做法有差异。 立夏之光 (作者) 回复 LoicHmh 2019-10-22 你要指定 size 为 (5, 5), 用 size= (5, 5), 而不是 scale_factor=2
torch.nn.functional.interpolate — PyTorch 1.11.0 documentation
pytorch.org › torchIf set to True, the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to False , the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation independent of input size when scale_factor is kept the same.
What we should use align_corners = False - vision ...
08.08.2018 · Corresponding coordinates are [-0.25, 0.25, 0.75, 1.25] which are calculate by x_original = (x_upsamle + 0.5) / 2 - 0.5. Then you can these coordinates to interpolate. For mode=‘bilinear’ and align_corners=True, …
Bilinear interpolation in PyTorch, and benchmarking vs. numpy ...
gist.github.com › peteflorence › a1da2c759ca1ac2b74Mar 29, 2022 · For the correctness test comparing with scipy, we couldn't do W x H x C interpolation for anything but C=1. Now though, we can do bilinear interpolation in either numpy or torch for arbitrary C: # Do high dimensional bilinear interpolation in numpy and PyTorch W, H, C = 25, 25, 7 image = np. random. randn ( W, H, C ) num_samples = 4 samples_x ...