Du lette etter:

pytorch lightning accelerator

Accelerators — PyTorch Lightning 1.6.0dev documentation
https://pytorch-lightning.readthedocs.io/en/latest/extensions/accelerator.html
Accelerators¶. Accelerators connect a Lightning Trainer to arbitrary accelerators (CPUs, GPUs, TPUs, IPUs). Accelerators also manage distributed communication through Plugins (like DP, DDP, HPC cluster) and can also be configured to run on arbitrary clusters or to link up to arbitrary computational strategies like 16-bit precision via AMP and Apex.. An Accelerator is meant to …
pytorch-lightning/accelerator.py at master · PyTorchLightning ...
https://github.com › blob › acceler...
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. - pytorch-lightning/accelerator.py at master ...
Accelerator — PyTorch Lightning 1.5.8 documentation
pytorch-lightning.readthedocs.io › en › stable
Accelerator¶ class pytorch_lightning.accelerators. Accelerator (precision_plugin, training_type_plugin) [source] ¶. Bases: object The Accelerator Base Class. An Accelerator is meant to deal with one type of Hardware.
Accelerators — PyTorch Lightning 1.5.8 documentation
https://pytorch-lightning.readthedocs.io › ...
Accelerators connect a Lightning Trainer to arbitrary accelerators (CPUs, GPUs, TPUs, etc). Accelerators also manage distributed communication through ...
Multi-GPU with Pytorch-Lightning — MinkowskiEngine 0.5.3
https://nvidia.github.io › demo › m...
In this tutorial, we will cover the pytorch-lightning multi-gpu example. ... gpus=num_devices, accelerator="ddp") trainer.fit(pl_module).
PyTorch Lightning - Accelerator - YouTube
www.youtube.com › watch
In this video, we give a short intro on how Lightning distributes computations and syncs gradients across many GPUs. The Default option is Distributed Data-P...
PyTorch Lightning 1.5 Released - Exxact Corporation
https://www.exxactcorp.com › blog
With just a few lines of code and no large refactoring, you get support for multi-device, multi-node, running on different accelerators (CPU, ...
PyTorch Lightning - Accelerator - YouTube
https://www.youtube.com › watch
PyTorch Lightning - Accelerator ... In this video, we give a short intro on how Lightning distributes ...
pytorch-lightning/accelerator.py at master · PyTorchLightning ...
github.com › PyTorchLightning › pytorch-lightning
from pytorch_lightning. plugins. training_type import DataParallelPlugin, TrainingTypePlugin: from pytorch_lightning. trainer. states import TrainerFn: from pytorch_lightning. utilities import rank_zero_deprecation: from pytorch_lightning. utilities. apply_func import apply_to_collection, move_data_to_device: from pytorch_lightning. utilities ...
Trainer — PyTorch Lightning 1.5.8 documentation
https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html
Passing training strategies (e.g., "ddp") to accelerator has been deprecated in v1.5.0 and will be removed in v1.7.0. Please use the strategy argument instead. accumulate_grad_batches. Accumulates grads every k batches or as set up in the dict. Trainer also calls optimizer.step () for the last indivisible step number.
Accelerators — PyTorch Lightning 1.5.8 documentation
https://pytorch-lightning.readthedocs.io/en/stable/extensions/accelerators.html
Accelerators¶. Accelerators connect a Lightning Trainer to arbitrary accelerators (CPUs, GPUs, TPUs, etc). Accelerators also manage distributed communication through Plugins (like DP, DDP, HPC cluster) and can also be configured to run on arbitrary clusters or to link up to arbitrary computational strategies like 16-bit precision via AMP and Apex.. An Accelerator is meant to …
Accelerators — PyTorch Lightning 1.5.8 documentation
pytorch-lightning.readthedocs.io › en › stable
Accelerators — PyTorch Lightning 1.5.8 documentation Accelerators Accelerators connect a Lightning Trainer to arbitrary accelerators (CPUs, GPUs, TPUs, etc).
Pytorch Lightning Distributed Accelerators using Ray
https://pythonrepo.com › repo › ra...
Once you add your accelerator to the PyTorch Lightning Trainer, you can parallelize training to all the cores in your laptop, or across a massive multi-node, ...
pytorch-lightning/accelerator_connector.py at master ...
github.com › PyTorchLightning › pytorch-lightning
from pytorch_lightning. accelerators. accelerator import Accelerator: from pytorch_lightning. accelerators. cpu import CPUAccelerator: from pytorch_lightning. accelerators. gpu import GPUAccelerator: from pytorch_lightning. accelerators. ipu import IPUAccelerator: from pytorch_lightning. accelerators. tpu import TPUAccelerator: from pytorch ...
Accelerator — PyTorch Lightning 1.5.8 documentation
https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch...
Accelerator¶ class pytorch_lightning.accelerators. Accelerator (precision_plugin, training_type_plugin) [source] ¶. Bases: object The Accelerator Base Class. An Accelerator is meant to deal with one type of Hardware. Currently there are accelerators for:
Announcing the new Lightning Trainer Strategy API
https://devblog.pytorchlightning.ai › ...
PyTorch Lightning v1.5 marks a major leap of reliability to support the ... Previously, the single accelerator flag was tied to both, Accelerators and ...
Stoke | by Nicholas Cilfone | Medium | PyTorch
https://medium.com › pytorch › st...
We started by using the fundamentals of Lightning Accelerators as inspiration (it supported the 'accelerators' of PyTorch DDP, Horovod, AMP, ...
pytorch-lightning/accelerator_connector.py at master ...
https://github.com/PyTorchLightning/pytorch-lightning/blob/master/...
from pytorch_lightning. accelerators. accelerator import Accelerator: from pytorch_lightning. accelerators. cpu import CPUAccelerator: from pytorch_lightning. accelerators. gpu import GPUAccelerator: from pytorch_lightning. accelerators. ipu import IPUAccelerator: from pytorch_lightning. accelerators. tpu import TPUAccelerator: from pytorch ...
PyTorch Lightning
www.pytorchlightning.ai
What is PyTorch lightning? Lightning makes coding complex networks simple. Spend more time on research, less on engineering. It is fully flexible to fit any use case and built on pure PyTorch so there is no need to learn a new language. A quick refactor will allow you to: Run your code on any hardware Performance & bottleneck profiler
pytorch-lightning/accelerator.py at master ...
https://github.com/.../blob/master/pytorch_lightning/accelerators/accelerator.py
pytorch-lightning / pytorch_lightning / accelerators / accelerator.py / Jump to. Code definitions.