LogSoftmax — PyTorch 1.10.1 documentation
pytorch.org › generated › torchLogSoftmax — PyTorch 1.10.0 documentation LogSoftmax class torch.nn.LogSoftmax(dim=None) [source] Applies the \log (\text {Softmax} (x)) log(Softmax(x)) function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as: \text {LogSoftmax} (x_ {i}) = \log\left (\frac {\exp (x_i) } { \sum_j \exp (x_j)} \right) LogSoftmax(xi
Softmax — PyTorch 1.10.1 documentation
pytorch.org › docs › stableSoftmax — PyTorch 1.10.0 documentation Softmax class torch.nn.Softmax(dim=None) [source] Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as:
AdaptiveLogSoftmaxWithLoss — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn...AdaptiveLogSoftmaxWithLoss¶ class torch.nn. AdaptiveLogSoftmaxWithLoss (in_features, n_classes, cutoffs, div_value = 4.0, head_bias = False, device = None, dtype = None) [source] ¶. Efficient softmax approximation as described in Efficient softmax approximation for GPUs by Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. Adaptive …
torch.nn.functional.log_softmax — PyTorch 1.10.1 documentation
pytorch.org › torchtorch.nn.functional.log_softmax(input, dim=None, _stacklevel=3, dtype=None) [source] Applies a softmax followed by a logarithm. While mathematically equivalent to log (softmax (x)), doing these two operations separately is slower and numerically unstable. This function uses an alternative formulation to compute the output and gradient correctly.