BoTorch · Bayesian Optimization in PyTorch
botorch.org › tutorials › vae_mnistVAE MNIST example: BO in a latent space ¶ In this tutorial, we use the MNIST dataset and some standard PyTorch examples to show a synthetic problem where the input to the objective function is a 28 x 28 image. The main idea is to train a variational auto-encoder (VAE) on the MNIST dataset and run Bayesian Optimization in the latent space.
GitHub - lyeoni/pytorch-mnist-VAE
github.com › lyeoni › pytorch-mnist-VAEOct 24, 2018 · pytorch-mnist-VAE Variational AutoEncoder on the MNIST data set using the PyTorch Dependencies PyTorch torchvision numpy Results Generated samples from 2-D latent variable with random numbers from a normal distribution with mean 0 and variance 1 Reference Auto-Encoding Variational Bayes.