torch.Tensor.type — PyTorch 1.10.1 documentation
pytorch.org › docs › stableTensor.type(dtype=None, non_blocking=False, **kwargs) → str or Tensor. Returns the type if dtype is not provided, else casts this object to the specified type. If this is already of the correct type, no copy is performed and the original object is returned. Parameters. dtype ( type or string) – The desired type.
torch.tensor — PyTorch 1.10.1 documentation
pytorch.org › docs › stableDefault: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional) – If autograd should record operations on the returned
torch.Tensor — PyTorch 1.10.1 documentation
pytorch.org › docs › stabletorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...
torch.Tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/tensorstorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...