Normalizing a Tensor column wise - PyTorch Forums
discuss.pytorch.org › t › normalizing-a-tensorJul 05, 2018 · So, choosing the first element solved the issue. The corrected code as of PyTorch 0.4 is as below: import torch def normalize(x): x_normed = x / x.max(0, keepdim=True)[0] return x_normed t = torch.tensor([[1000, 10, 0.5], [765, 5, 0.35], [800, 7, 0.09]]) print(normalize(t))
torch.norm — PyTorch 1.10.1 documentation
pytorch.org › docs › stabletorch.norm(input, p='fro', dim=None, keepdim=False, out=None, dtype=None) [source] Returns the matrix norm or vector norm of a given tensor. Warning. torch.norm is deprecated and may be removed in a future PyTorch release. Its documentation and behavior may be incorrect, and it is no longer actively maintained.
torch.nn.functional.normalize — PyTorch 1.10.1 documentation
pytorch.org › torchWith the default arguments it uses the Euclidean norm over vectors along dimension 1 1 1 for normalization. Parameters. input – input tensor of any shape. p – the exponent value in the norm formulation. Default: 2. dim – the dimension to reduce. Default: 1. eps – small value to avoid division by zero. Default: 1e-12