Modules — PyTorch 1.10.1 documentation
pytorch.org › docs › stableThe process of training module parameters through successive forward / backward passes is covered in detail in Neural Network Training with Modules. The full set of parameters registered by the module can be iterated through via a call to parameters() or named_parameters(), where the latter includes each parameter’s name:
Pytorch获取中间层输出的几种方法 - 知乎 - Zhihu
https://zhuanlan.zhihu.com/p/362985275Additionally, it is only able to query submodules that are directly assigned to the model. So if `model` is passed, `model.feature1` can be returned, but not `model.feature1.layer2`. Arguments: model (nn.Module): model on which we will extract the features return_layers (Dict [name, new_name]): a dict containing the names of the modules for ...
Module — PyTorch 1.10.1 documentation
pytorch.org › generated › torchadd_module (name, module) [source] ¶ Adds a child module to the current module. The module can be accessed as an attribute using the given name. Parameters. name (string) – name of the child module. The child module can be accessed from this module using the given name. module – child module to be added to the module. apply (fn) [source] ¶