CrossEntropyLoss — PyTorch 1.10.1 documentation
pytorch.org › torchThe latter is useful for higher dimension inputs, such as computing cross entropy loss per-pixel for 2D images. The target that this criterion expects should contain either: Class indices in the range [ 0 , C − 1 ] [0, C-1] [ 0 , C − 1 ] where C C C is the number of classes; if ignore_index is specified, this loss also accepts this class ...
How to use Soft-label for Cross-Entropy loss? - PyTorch Forums
discuss.pytorch.org › t › how-to-use-soft-label-forMar 11, 2020 · Soft Cross Entropy Loss (TF has it does Pytorch have it) softmax_cross_entropy_with_logits TF supports not needing to have hard labels for cross entropy loss: logits = [ [4.0, 2.0, 1.0], [0.0, 5.0, 1.0]] labels = [ [1.0, 0.0, 0.0], [0.0, 0.8, 0.2]] tf.nn.softmax_cross_entropy_with_logits (labels=labels, logits=logits) Can we do the same thing in Pytorch?
Cross entropy for soft label - PyTorch Forums
discuss.pytorch.org › t › cross-entropy-for-softApr 07, 2018 · Cross entropy for soft label - PyTorch Forums. The cross entropy in pythorch can’t be used for the case when the target is soft label, a value between 0 and 1 instead of 0 or 1. I code my own cross entropy, but i found the classification accuracy is always worse tha… The cross entropy in pythorch can’t be used for the case when the target is soft label, a value between 0 and 1 instead of 0 or 1.