torch.Tensor.clone — PyTorch 1.11.0 documentation
pytorch.org › generated › torchLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models
torch.clone — PyTorch 1.11.0 documentation
pytorch.org › docs › stabletorch.clone — PyTorch 1.11.0 documentation torch.clone torch.clone(input, *, memory_format=torch.preserve_format) → Tensor Returns a copy of input. Note This function is differentiable, so gradients will flow back from the result of this operation to input. To create a tensor without an autograd relationship to input see detach (). Parameters
torch.Tensor — PyTorch 1.11.0 documentation
pytorch.org › docs › stabletorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...
torch.Tensor — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/tensors.htmltorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...
Pytorch张量(Tensor)复制_winycg的博客-CSDN博客_pytorch 复制张量
blog.csdn.net › winycg › articleSep 13, 2019 · PyTorch 中的clone (),deta ch ()及相关扩展 Breeze 2万+ clone () 与 deta ch () 对比 Torch 为了提高速度,向量或是矩阵的赋值是指向同一内存的,这不同于 Matlab。 如果需要保存旧的 tensor 即需要开辟新的存储地址而不是引用,可以用 clone () 进行深拷贝, 首先我们来打印出来clone ()操作后的数据类型定义变化: (1). 简单打印类型 import torch a = torch. tensor (1.0, requires_grad=True) b = a.clone () c = a.deta ch () a.data *= 3 b