torch.Tensor — PyTorch 1.10.1 documentation
pytorch.org › docs › stableTensor.new_full. Returns a Tensor of size size filled with fill_value. Tensor.new_empty. Returns a Tensor of size size filled with uninitialized data. Tensor.new_ones. Returns a Tensor of size size filled with 1. Tensor.new_zeros. Returns a Tensor of size size filled with 0. Tensor.is_cuda. Is True if the Tensor is stored on the GPU, False ...
torch.zeros — PyTorch 1.10.1 documentation
pytorch.org › docs › stableReturns a tensor filled with the scalar value 0, with the shape defined by the variable argument size. Parameters. size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword Arguments. out (Tensor, optional) – the output tensor.
0 dimension tensor - PyTorch Forums
discuss.pytorch.org › t › 0-dimension-tensorMay 17, 2018 · For 0.4 above doesn’t work. To create a 0-dim tensor (i.e. scaler tensor as opposed to vector of 1 dimension), do this: a = torch.tensor(3) Yes capital T makes all the difference :). torch.Tensor is an alias for the default tensor type ( torch.FloatTensor). A tensor can be constructed from a Python list or sequence using the torch.tensor() constructor
torch.Tensor.size — PyTorch 1.10.1 documentation
pytorch.org › generated › torchtorch.Tensor.size¶ Tensor. size (dim = None) → torch.Size or int ¶ Returns the size of the self tensor. If dim is not specified, the returned value is a torch.Size, a subclass of tuple. If dim is specified, returns an int holding the size of that dimension. Parameters. dim (int, optional) – The dimension for which to retrieve the size. Example:
torch.Tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/tensorstorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...