torch.Tensor.to_dense — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.Tensor.to_dense.htmltorch.Tensor.to_dense Tensor.to_dense() → Tensor Creates a strided copy of self. Warning Throws an error if self is a strided tensor. Example: >>> s = torch.sparse_coo_tensor( ... torch.tensor( [ [1, 1], ... [0, 2]]), ... torch.tensor( [9, 10]), ... size=(3, 3)) >>> s.to_dense() tensor ( [ [ 0, 0, 0], [ 9, 0, 10], [ 0, 0, 0]])
torch.Tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/tensorsA tensor can be constructed from a Python list or sequence using the torch.tensor () constructor: >>> torch.tensor( [ [1., -1.], [1., -1.]]) tensor ( [ [ 1.0000, -1.0000], [ 1.0000, -1.0000]]) >>> torch.tensor(np.array( [ [1, 2, 3], [4, 5, 6]])) tensor ( [ [ 1, 2, 3], [ 4, 5, 6]]) Warning torch.tensor () always copies data.
torch.Tensor.to_dense — PyTorch 1.10.1 documentation
pytorch.org › docs › stableLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models
torch.Tensor.to — PyTorch 1.10.1 documentation
pytorch.org › docs › stabletorch.Tensor.to. Performs Tensor dtype and/or device conversion. A torch.dtype and torch.device are inferred from the arguments of self.to (*args, **kwargs). If the self Tensor already has the correct torch.dtype and torch.device, then self is returned. Otherwise, the returned tensor is a copy of self with the desired torch.dtype and torch.device.