torchvision.models — Torchvision master documentation
pytorch.org › vision › 0torchvision.models.wide_resnet50_2 (pretrained: bool = False, progress: bool = True, **kwargs) → torchvision.models.resnet.ResNet [source] ¶ Wide ResNet-50-2 model from “Wide Residual Networks”. The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block.
torchvision.models — Torchvision 0.8.1 documentation
pytorch.org › vision › 0torchvision.models.shufflenet_v2_x1_0(pretrained=False, progress=True, **kwargs) [source] Constructs a ShuffleNetV2 with 1.0x output channels, as described in “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design”. Parameters: pretrained ( bool) – If True, returns a model pre-trained on ImageNet.