ColorJitter — Torchvision main documentation - pytorch.org
pytorch.org › torchvisionColorJitter. Randomly change the brightness, contrast, saturation and hue of an image. If the image is torch Tensor, it is expected to have […, 1 or 3, H, W] shape, where … means an arbitrary number of leading dimensions. If img is PIL Image, mode “1”, “I”, “F” and modes with transparency (alpha channel) are not supported.
torchvision.transforms — Torchvision 0.8.1 documentation
pytorch.org › vision › 0class torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) [source] Randomly change the brightness, contrast and saturation of an image. Parameters: brightness ( float or tuple of python:float (min, max)) – How much to jitter brightness. brightness_factor is chosen uniformly from [max (0, 1 - brightness), 1 ...
torchvision.transforms — Torchvision 0.11.0 documentation
https://pytorch.org/vision/stable/transforms.html?highlight=colorjitterclass torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) [source] Randomly change the brightness, contrast, saturation and hue of an image. If the image is torch Tensor, it is expected to have […, 1 or 3, H, W] shape, where … means an arbitrary number of leading dimensions.
torchvision.transforms — Torchvision 0.11.0 documentation
pytorch.org › vision › stableclass torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) [source] Randomly change the brightness, contrast, saturation and hue of an image. If the image is torch Tensor, it is expected to have […, 1 or 3, H, W] shape, where … means an arbitrary number of leading dimensions.
ColorJitter — Torchvision main documentation - pytorch.org
pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.htmlColorJitter class torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) [source] Randomly change the brightness, contrast, saturation and hue of an image. If the image is torch Tensor, it is expected to have […, 1 or 3, H, W] shape, where … means an arbitrary number of leading dimensions.