Transforming and augmenting images - PyTorch
pytorch.org › vision › stablePerform perspective transform of the given image. pil_to_tensor (pic) Convert a PIL Image to a tensor of the same type. posterize (img, bits) Posterize an image by reducing the number of bits for each color channel. resize (img, size[, interpolation, max_size, …]) Resize the input image to the given size.
Pytorch transforms.Resize()的简单用法 - CSDN博客
blog.csdn.net › qq_40714949 › articleApr 02, 2021 · 使用 Pytorch 训练通常使用 Torch vi si on 的transforms 进行预处理, transforms 提供了丰富 的 数据增强手段,但是 transforms.Resize 和OpenCV 的resize 会有一定差异,这会导致我们使用C++去部署 pytorch 训练 的 model时候可能会有一定差距,源码里面也提到过: because PIL appli es antialia si ng. This may lead to si gnificant diffe re nc es in the per form ance of a OpenCV中 的resize 函数与 Pytorch 中 的transforms.Resize 函数 的 区别
Resize — Torchvision main documentation - pytorch.org
pytorch.org › torchvisionclass torchvision.transforms.Resize(size, interpolation=<InterpolationMode.BILINEAR: 'bilinear'>, max_size=None, antialias=None) [source] Resize the input image to the given size. If the image is torch Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions. Warning.
Python Examples of torchvision.transforms.Resize
www.programcreek.com › python › exampleorig_size = get_orig_size(dataset_name) transform = [] target_transform = [] if downscale is not None: transform.append(transforms.Resize(orig_size // downscale)) target_transform.append( transforms.Resize(orig_size // downscale, interpolation=Image.NEAREST)) transform.extend( [transforms.Resize(orig_size), net_transform]) target_transform.extend( [transforms.Resize(orig_size, interpolation=Image.NEAREST), to_tensor_raw]) transform = transforms.Compose(transform) target_transform = transforms.