TransformerDecoder — PyTorch 1.10.1 documentation
pytorch.org › torchTransformerDecoder — PyTorch 1.10.0 documentation TransformerDecoder class torch.nn.TransformerDecoder(decoder_layer, num_layers, norm=None) [source] TransformerDecoder is a stack of N decoder layers Parameters decoder_layer – an instance of the TransformerDecoderLayer () class (required).
TransformerDecoderLayer — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.TransformerDecoderLayer.htmlTransformerDecoderLayer¶ class torch.nn. TransformerDecoderLayer (d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=<function relu>, layer_norm_eps=1e-05, batch_first=False, norm_first=False, device=None, dtype=None) [source] ¶. TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. …
TransformerEncoder — PyTorch 1.10.1 documentation
pytorch.org › torchLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models
Transformer — PyTorch 1.10.1 documentation
pytorch.org › generated › torchNote: Due to the multi-head attention architecture in the transformer model, the output sequence length of a transformer is same as the input sequence (i.e. target) length of the decode. where S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
Transformer — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.htmlTransformer¶ class torch.nn. Transformer (d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation=<function relu>, custom_encoder=None, custom_decoder=None, layer_norm_eps=1e-05, batch_first=False, norm_first=False, device=None, dtype=None) [source] ¶. A transformer model. User is able to …
TransformerDecoderLayer — PyTorch 1.10.1 documentation
pytorch.org › docs › stableTransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. This standard decoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need.