ResNet18 - 2.0 English
docs.xilinx.com › r › en-USJan 20, 2022 · $ python -u resnet18_pruning.py --data_dir imagenet_dir --pretrained resnet18.pth --ratio 0.1 --ana True From the second round onwards, model analysis is no longer required. Increase the pruning ratio and use the sparse checkpoint saved from previous round as the pretrained weights.
resnet18 — Torchvision 0.12 documentation
pytorch.org › torchvisionResNet-18 model from “Deep Residual Learning for Image Recognition”. Parameters pretrained ( bool) – If True, returns a model pre-trained on ImageNet progress ( bool) – If True, displays a progress bar of the download to stderr Examples using resnet18: Tensor transforms and JIT
【Pytorch】torchvision.models详细教程 - 知乎
https://zhuanlan.zhihu.com/p/477058585These can constructed by passing pretrained=True: 对于 ResNet variants 和 AlexNet ,我们也提供了预训练 ( pre-trained )的模型。 import torchvision.models as models #pretrained=True就可以使用预训练的模型 resnet18 = models.resnet18 (pretrained=True) alexnet = models.alexnet (pretrained=True) ImageNet 1-crop error rates (224x224)
resnet18 — Torchvision main documentation
pytorch.org › generated › torchvisionResNet-18 from Deep Residual Learning for Image Recognition. Parameters weights ( ResNet18_Weights, optional) – The pretrained weights to use. See ResNet18_Weights below for more details, and possible values. By default, no pre-trained weights are used. progress ( bool, optional) – If True, displays a progress bar of the download to stderr.