scipy.stats.linregress — SciPy v1.7.1 Manual
docs.scipy.org › doc › scipyscipy.stats.linregress. ¶. scipy.stats.linregress(x, y=None, alternative='two-sided') [source] ¶. Calculate a linear least-squares regression for two sets of measurements. Parameters. x, yarray_like. Two sets of measurements. Both arrays should have the same length. If only x is given (and y=None ), then it must be a two-dimensional array where one dimension has length 2.
3.6.10.3. A simple linear regression — Scipy lecture notes
scipy-lectures.org › plot_linear_regressionMar 06, 2010 · A simple linear regression ¶. import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression # x from 0 to 30 x = 30 * np.random.random( (20, 1)) # y = a*x + b with noise y = 0.5 * x + 1.0 + np.random.normal(size=x.shape) # create a linear regression model model = LinearRegression() model.fit(x, y) # predict y from the data x_new = np.linspace(0, 30, 100) y_new = model.predict(x_new[:, np.newaxis]) # plot the results plt.figure(figsize=(4, 3)) ax = plt.
Linear regression — SciPy Cookbook documentation
scipy-cookbook.readthedocs.io › items › Linearfrom scipy import linspace, polyval, polyfit, sqrt, stats, randn from matplotlib.pyplot import plot, title, show, legend # Linear regression example # This is a very simple example of using two scipy tools # for linear regression, polyfit and stats.linregress # Sample data creation # number of points n = 50 t = linspace (-5, 5, n) # parameters a = 0.8 b =-4 x = polyval ([a, b], t) # add some noise xn = x + randn (n) # Linear regressison -polyfit - polyfit can be used other orders polys (ar ...
Linear regression — SciPy Cookbook documentation
https://scipy-cookbook.readthedocs.io/items/LinearRegression.htmlfrom scipy import linspace, polyval, polyfit, sqrt, stats, randn from matplotlib.pyplot import plot, title, show, legend # Linear regression example # This is a very simple example of using two scipy tools # for linear regression, polyfit and stats.linregress # Sample data creation # number of points n = 50 t = linspace(-5,5,n) # parameters a ...