scipy.sparse.csc_matrix — SciPy v1.7.1 Manual
docs.scipy.org › scipyscipy.sparse.csc_matrix. ¶. This can be instantiated in several ways: with another sparse matrix S (equivalent to S.tocsc ()) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’. where data, row_ind and col_ind satisfy the relationship a [row_ind [k], col_ind [k]] = data [k].
scipy.sparse.coo_matrix — SciPy v1.7.1 Manual
docs.scipy.org › scipyscipy.sparse.coo_matrix. ¶. A sparse matrix in COOrdinate format. Also known as the ‘ijv’ or ‘triplet’ format. with another sparse matrix S (equivalent to S.tocoo ()) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’. Where A [i [k], j [k]] = data [k]. When shape is not specified, it is ...
SciPy Sparse Data - W3Schools
www.w3schools.com › python › scipySciPy has a module, scipy.sparse that provides functions to deal with sparse data. There are primarily two types of sparse matrices that we use: CSC - Compressed Sparse Column. For efficient arithmetic, fast column slicing. CSR - Compressed Sparse Row. For fast row slicing, faster matrix vector products. We will use the CSR matrix in this tutorial.