Sequence to Sequence Learning with Neural Networks
https://arxiv.org/abs/1409.3215v310.09.2014 · Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the …
[1409.3215v3] Sequence to Sequence Learning with Neural Networks
arxiv.org › abs › 1409Sep 10, 2014 · Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses ...
Sequence to Sequence Learning with Neural Networks
papers.nips.cc › paper › 2014learn on data with long range temporal dependencies makes it a natural choice for this application due to the considerable time lag between the inputs and their corresponding outputs (fig. 1). There have been a number of related attempts to address the general sequence to sequence learning problem with neural networks.