CUDA semantics — PyTorch 1.11.0 documentation
pytorch.org › docs › stableCUDA semantics — PyTorch 1.11.0 documentation CUDA semantics torch.cuda is used to set up and run CUDA operations. It keeps track of the currently selected GPU, and all CUDA tensors you allocate will by default be created on that device. The selected device can be changed with a torch.cuda.device context manager.
torch.cuda.set_device — PyTorch 1.11.0 documentation
pytorch.org › generated › torchtorch.cuda.set_device — PyTorch 1.11.0 documentation torch.cuda.set_device torch.cuda.set_device(device) [source] Sets the current device. Usage of this function is discouraged in favor of device. In most cases it’s better to use CUDA_VISIBLE_DEVICES environmental variable. Parameters device ( torch.device or int) – selected device.
torch.cuda — PyTorch 1.11.0 documentation
pytorch.org › docs › stabletorch.cuda — PyTorch 1.11.0 documentation torch.cuda This package adds support for CUDA tensor types, that implement the same function as CPU tensors, but they utilize GPUs for computation. It is lazily initialized, so you can always import it, and use is_available () to determine if your system supports CUDA.