shap.Explainer — SHAP latest documentation
shap-lrjball.readthedocs.io › shapUses Shapley values to explain any machine learning model or python function. This is the primary explainer interface for the SHAP library. It takes any combination of a model and masker and returns a callable subclass object that implements the particular estimation algorithm that was chosen. Parameters modelobject or function
shap.Explainer — SHAP latest documentation
shap.readthedocs.io › shapshap.Explainer class shap.Explainer(model, masker=None, link=CPUDispatcher (<function identity>), algorithm='auto', output_names=None, feature_names=None, linearize_link=True, **kwargs) Uses Shapley values to explain any machine learning model or python function. This is the primary explainer interface for the SHAP library.
API Reference — SHAP latest documentation
shap.readthedocs.io › en › latestThis page contains the API reference for public objects and functions in SHAP. There are also example notebooks available that demonstrate how to use the API of each object/function. Explanation shap.Explanation (values [, base_values, ...]) A slicable set of parallel arrays representing a SHAP explanation. explainers plots maskers models