sklearn.svm.SVR — scikit-learn 1.0.2 documentation
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.htmlsklearn.svm.SVR¶ class sklearn.svm. SVR (*, kernel = 'rbf', degree = 3, gamma = 'scale', coef0 = 0.0, tol = 0.001, C = 1.0, epsilon = 0.1, shrinking = True, cache_size = 200, verbose = False, max_iter =-1) [source] ¶ Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm.
Using SVMs with sklearn · Martin Thoma
martin-thoma.com › svm-with-sklearnJan 14, 2016 · It also includes sklearn.svm.SVC . SVC is short for support vector classifier and this is how you use it for the MNIST dataset. Parameters for which you might want a further explanation: #!/usr/bin/env python """ Train a SVM to categorize 28x28 pixel images into digits (MNIST dataset). """ import numpy as np def main(): """Orchestrate the ...
sklearn.svm.SVC — scikit-learn 0.19.1 documentation
https://sklearn.org/modules/generated/sklearn.svm.SVC.htmlsklearn.svm.SVC¶ class sklearn.svm.SVC (C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=’ovr’, random_state=None) [source] ¶. C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than ...
sklearn.svm.LinearSVC — scikit-learn 1.0.2 documentation
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.htmlsklearn.svm.LinearSVC¶ class sklearn.svm. LinearSVC (penalty = 'l2', loss = 'squared_hinge', *, dual = True, tol = 0.0001, C = 1.0, multi_class = 'ovr', fit_intercept = True, intercept_scaling = 1, class_weight = None, verbose = 0, random_state = None, max_iter = 1000) [source] ¶. Linear Support Vector Classification. Similar to SVC with parameter kernel=’linear’, but implemented in ...
sklearn.svm.SVR — scikit-learn 1.0.2 documentation
scikit-learn.org › generated › sklearnsklearn.svm.SVR¶ class sklearn.svm. SVR (*, kernel = 'rbf', degree = 3, gamma = 'scale', coef0 = 0.0, tol = 0.001, C = 1.0, epsilon = 0.1, shrinking = True, cache_size = 200, verbose = False, max_iter =-1) [source] ¶ Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm.