Softmax Activation Function with Python
machinelearningmastery.com › softmax-activatiSoftmax Activation Function. The softmax function is used as the activation function in the output layer of neural network models that predict a multinomial probability distribution. That is, softmax is used as the activation function for multi-class classification problems where class membership is required on more than two class labels.
Softmax function - Wikipedia
en.wikipedia.org › wiki › Softmax_functionThe softmax function, also known as softargmax: 184 or normalized exponential function,: 198 is a generalization of the logistic function to multiple dimensions. It is used in multinomial logistic regression and is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes, based on Luce's ...
Softmax function - Wikipedia
https://en.wikipedia.org/wiki/Softmax_functionThe softmax function, also known as softargmax or normalized exponential function, is a generalization of the logistic function to multiple dimensions. It is used in multinomial logistic regression and is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes, based on Luce's choice axiom.