Du lette etter:

src_key_padding_mask

Pytorch's nn.TransformerEncoder "src_key_padding_mask" not ...
https://tipsfordev.com › pytorch-s-...
The documentation says, to add an argument src_key_padding_mask to the forward function of the nn.TransformerEncoder module. This mask should be a tensor ...
Transformer [1/2]- Pytorch's nn.Transformer - Andrew Peng
https://andrewpeng.dev › transfor...
In Pytorch, this is done by passing src_key_padding_mask to the transformer. For the example, this looks like [False, False, False, False, False, False, ...
speechbrain.lobes.models.transformer.TransformerLM ...
https://speechbrain.readthedocs.io › ...
src_mask, src_key_padding_mask = self.make_masks(src) src = self.custom_src_module(src) if self.embedding_proj is not None: src = self.embedding_proj(src) ...
Pytorch's nn.TransformerEncoder “src_key_padding_mask ...
https://python.tutorialink.com › py...
The documentation says, to add an argument src_key_padding_mask to the forward function of the nn.TransformerEncoder module. This mask should be a tensor ...
Transformer Encoder Layer with src_key_padding makes NaN ...
https://github.com/pytorch/pytorch/issues/24816
18.08.2019 · If a FloatTensor is provided, it will be added to the attention weight. [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged.
How to add padding mask to nn.TransformerEncoder module?
https://discuss.pytorch.org › how-t...
In TransformerEncoderLayer there are two mask parameters: src_mask and src_key_padding_mask , what will be content(is it boolean or -inf/0) ...
nn.Transformer explaination - nlp - PyTorch Forums
https://discuss.pytorch.org/t/nn-transformer-explaination/53175
12.08.2019 · src_key_padding_mask – the ByteTensor mask for src keys per batch (optional). In my opinion, src_mask 's dimension is (S,S), and S is the max source length in batch, so i need to send input src_mask (N,S,S) to the Transformer.I don’t know if i understand that correctly.
TransformerEncoder — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
src_key_padding_mask – the mask for the src keys per batch (optional). Shape: see the docs in Transformer class.
pytorch - Difference between src_mask and src_key_padding ...
https://stackoverflow.com/questions/62170439
02.06.2020 · Both src_mask and src_key_padding_mask is used in the MultiheadAttention mechanism. According to the documentation of MultiheadAttention: key_padding_mask – if provided, specified padding elements in the key will be ignored by the attention. attn_mask – 2D or 3D mask that prevents attention to certain positions.
Difference between src_mask and src_key_padding_mask
https://stackoverflow.com › differe...
src_key_padding_mask [B, Tx] = [N, S] – the ByteTensor mask for src keys per batch (optional). Since your src usually has different lengths ...
How to add padding mask to nn.TransformerEncoder module ...
https://discuss.pytorch.org/t/how-to-add-padding-mask-to-nn...
08.12.2019 · as for, src_key_padding_mask, it has to be of shape (N, S), where N is batch size, and S is source sequence length. I think it is to make us not consider any padded words for finding representation of other words. for example, if we want to not consider third word in our source sequence, for finding attention weights, then, (batch size of 1)
Transformer Encoder Layer with src_key_padding makes NaN
https://github.com › pytorch › issues
... src_key_padding_mask=y).transpose(0,1) print(output) >> torch.Size([4, 2, 3]) torch.Size([4, 2]) tensor([[False, False], [ True, False], ...