statsmodels.tsa.stattools.acovf — statsmodels
https://www.statsmodels.org/devel/generated/statsmodels.tsa.stattools.acovf.htmlstatsmodels.tsa.stattools.acovf(x, adjusted=False, demean=True, fft=True, missing='none', nlag=None) [source] Estimate autocovariances. Parameters x array_like Time series data. Must be 1d. adjusted bool, default False If True, then denominators is n-k, otherwise n. demean bool, default True If True, then subtract the mean x from each element of x.
statsmodels.tsa.stattools.acf — statsmodels
https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.acf.html?...statsmodels.tsa.stattools.acf(x, adjusted=False, nlags=None, qstat=False, fft=True, alpha=None, bartlett_confint=True, missing='none')[source] Calculate the autocorrelation function. Parameters x array_like The time series data. adjusted bool, default False If True, then denominators for autocovariance are n-k, otherwise n. nlags int, optional
Time Series analysis tsa — statsmodels
https://www.statsmodels.org/stable/tsa.htmlstatsmodels.tsa contains model classes and functions that are useful for time series analysis. Basic models include univariate autoregressive models (AR), vector autoregressive models (VAR) and univariate autoregressive moving average models (ARMA). Non-linear models include Markov switching dynamic regression and autoregression.