Du lette etter:

statsmodels tsa stattools

import statsmodels.tsa.stattools as ts
https://import-as.github.io › import
python import shorthands. statsmodels.tsa.stattools. Imported 8 times. 8 × import statsmodels.tsa.stattools as ts. import as…
statsmodels.tsa.stattools.q_stat
https://www.statsmodels.org › dev
statsmodels.tsa.stattools.q_stat(x, nobs)[source]¶. Compute Ljung-Box Q Statistic. Parameters. xarray_like. Array of autocorrelation coefficients.
statsmodels.tsa.stattools
https://www.statsmodels.org › dev
Source code for statsmodels.tsa.stattools. """ Statistical tools for time series analysis """ from __future__ import annotations from ...
statsmodels.tsa.stattools.pacf_ols
https://www.statsmodels.org › dev
statsmodels.tsa.stattools.pacf_ols¶ ... Calculate partial autocorrelations via OLS. ... This solves a separate OLS estimation for each desired lag using method in [ ...
statsmodels.tsa.stattools.acf — statsmodels
https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.acf.html?...
statsmodels.tsa.stattools.acf(x, adjusted=False, nlags=None, qstat=False, fft=True, alpha=None, bartlett_confint=True, missing='none')[source] Calculate the autocorrelation function. Parameters x array_like The time series data. adjusted bool, default False If True, then denominators for autocovariance are n-k, otherwise n. nlags int, optional
statsmodels.tsa.stattools.coint
https://www.statsmodels.org › dev
statsmodels.tsa.stattools.coint¶ ... Test for no-cointegration of a univariate equation. The null hypothesis is no cointegration. Variables in y0 and y1 are ...
statsmodels.tsa.stattools.acovf — statsmodels
https://www.statsmodels.org/devel/generated/statsmodels.tsa.stattools.acovf.html
statsmodels.tsa.stattools.acovf(x, adjusted=False, demean=True, fft=True, missing='none', nlag=None) [source] Estimate autocovariances. Parameters x array_like Time series data. Must be 1d. adjusted bool, default False If True, then denominators is n-k, otherwise n. demean bool, default True If True, then subtract the mean x from each element of x.
statsmodels/stattools.py at main - GitHub
https://github.com › ... › tsa
statsmodels/statsmodels/tsa/stattools.py ... from statsmodels.tsa.adfvalues import mackinnoncrit, mackinnonp. from statsmodels.tsa.tsatools import add_trend ...
Source code for statsmodels.tsa.stattools
https://www.statsmodels.org › statt...
Source code for statsmodels.tsa.stattools. """ Statistical tools for time series analysis """ import warnings from statsmodels.compat.numpy ...
Source code for statsmodels.tsa.stattools
https://www.statsmodels.org › statt...
Source code for statsmodels.tsa.stattools. """ Statistical tools for time series analysis """ from __future__ import division from statsmodels.compat.python ...
statsmodels.tsa.stattools.kpss — statsmodels
https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.kpss.html
statsmodels.tsa.stattools.kpss(x, regression='c', nlags='auto', store=False)[source] Kwiatkowski-Phillips-Schmidt-Shin test for stationarity. Computes the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null hypothesis that x is level or trend stationary. Parameters x array_like, 1d The data series to test. regression str{“c”, “ct”}
statsmodels.tsa.stattools — statsmodels
https://www.statsmodels.org/dev/_modules/statsmodels/tsa/stattools.html
See Also-----statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_yw Partial autocorrelation estimation using Yule-Walker. statsmodels.tsa.stattools.pacf_burg Partial autocorrelation estimation using Burg"s method. Notes-----This solves a separate OLS estimation for each desired lag using method in [1]_.
statsmodels.tsa.stattools.acf — statsmodels
https://www.statsmodels.org/v0.11.0/generated/statsmodels.tsa.stattools.acf.html?...
statsmodels.tsa.stattools.acf¶ statsmodels.tsa.stattools.acf (x, unbiased=False, nlags=40, qstat=False, fft=None, alpha=None, missing='none') [source] ¶ Calculate the autocorrelation function. Parameters x array_like. The time series data. unbiased bool. If True, then denominators for autocovariance are n-k, otherwise n.
statsmodels.tsa.stattools.adfuller — statsmodels
https://www.statsmodels.org/devel/generated/statsmodels.tsa.stattools.adfuller.html
statsmodels.tsa.stattools.adfuller(x, maxlag=None, regression='c', autolag='AIC', store=False, regresults=False)[source] Augmented Dickey-Fuller unit root test. The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters x array_like, 1d The data series to test.
statsmodels.tsa.stattools.adfuller
https://www.statsmodels.org › dev
statsmodels.tsa.stattools.adfuller(x, maxlag=None, regression='c', autolag='AIC', store=False, regresults=False)[source]¶. Augmented Dickey-Fuller unit root ...
Time Series analysis tsa — statsmodels
https://www.statsmodels.org/stable/tsa.html
statsmodels.tsa contains model classes and functions that are useful for time series analysis. Basic models include univariate autoregressive models (AR), vector autoregressive models (VAR) and univariate autoregressive moving average models (ARMA). Non-linear models include Markov switching dynamic regression and autoregression.
statsmodels.tsa.stattools.acf
https://www.statsmodels.org › dev
statsmodels.tsa.stattools.acf¶ · The time series data. adjusted · Number of lags to return autocorrelation for. · If True, returns the Ljung-Box q statistic for ...