SGD - Keras
https://keras.io/api/optimizers/sgdArguments. learning_rate: A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use.The learning rate. Defaults to 0.01. momentum: float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens …
SGD - Keras
keras.io › api › optimizersArguments. learning_rate: A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use.
tf.keras.optimizers.SGD | TensorFlow Core v2.7.0
www.tensorflow.org › tf › kerasA Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to 0.01. momentum. float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations.
tfa.optimizers.SGDW | TensorFlow Addons
www.tensorflow.org › addons › api_docsNov 15, 2021 · It computes the update step of tf.keras.optimizers.SGD and additionally decays the variable. Note that this is different from adding L2 regularization on the variables to the loss. Decoupling the weight decay from other hyperparameters (in particular the learning rate) simplifies hyperparameter search.