Du lette etter:

top k pooling

Topk Polling - Shinning
https://packyan.github.io/2019/08/12/TopK-Polling
12.08.2019 · Pooling layer top-k pooling. 取出最重要的k个节点,其余节点直接丢弃, 选择中的top-k pooling 节点的特征,经过线性变换或者softmax 然后激活函数,与原始特征相乘,得到新的特征,在池化的同时,做了一次特征的变换。
比DGL快14倍:PyTorch图神经网络库PyG上线了 - 知乎
zhuanlan.zhihu.com › p › 58758120
为进一步提取层级信息和使用更深层的GNN模型,需要以空间或数据依赖的方式使用多种池化方法。PyG目前提供Graclus、voxel grid pooling、迭代最远点采样算法(iterative farthest point sampling algorithm)的实现示例,以及可微池化机制(如DiffPool和top_k pooling)。 小批量处理。
|K-Max Pooling - NLP中CNN模型常见的Pooling操作方法及其典型 …
www.elecfans.com/rengongzhineng/580083_2.html
K-MaxPooling的意思是:原先的Max Pooling Over Time从Convolution层一系列特征值中只取最强的那个值,那么我们思路可以扩展一下,K-Max Pooling可以取所有特征值中得分在Top –K的值,并保留这些特征值原始的先后顺序(图3是2-max Pooling的示意图),就是说通过多保留一些特征信息供后续阶段使用。
Graph U-Nets - Proceedings of Machine Learning Research
http://proceedings.mlr.press › ...
An illustration of the proposed graph pooling layer with k = 2. ... with the highest scores and record their indices in the top-k-node selection stage.
Self-Attention Graph Pooling - arXiv
https://arxiv.org › pdf
The pooling ratio k ∈ (0, 1] is a hyperparameter that determines the number of nodes to keep. The top ⌈kN⌉ nodes are selected based on the value of Z.
Graph U-Nets
proceedings.mlr.press/v97/gao19a/gao19a.pdf
pooling, global pooling layers (Zhao et al.,2015a) perform down-sampling operations on all input units, thereby re-ducing each feature map to a single number. In contrast, k-max pooling layers (Kalchbrenner et al.,2014) select the k-largest units out of each feature map. However, we cannot directly apply these pooling operations to graphs.
torch_geometric.nn — pytorch_geometric 2.0.4 documentation
pytorch-geometric.readthedocs.io › en › latest
The hook can modify the output. Input keyword arguments are passed to the hook as a dictionary in inputs[-1]. Returns a torch.utils.hooks.RemovableHandle that can be used to remove the added hook by calling handle.remove().
Pooling layers - Spektral
https://graphneural.network › layers
where rank(y,K) returns the indices of the top K values of y and GNN(A,X)=AXW. K is defined for each graph as a fraction of the number of nodes, ...
What is the best way to top k pool elements instead of only the ...
https://stackoverflow.com › what-is...
The max pooled output tensor. There will be an additional dimension saving the top k values. I know that I can expend the tensorflow operation ...
graphneural.network - Spektral
graphneural.network
Top-K pooling; Self-Attention Graph (SAG) pooling; Global pooling; Global gated attention pooling; SortPool; Spektral also includes lots of utilities for representing, manipulating, and transforming graphs in your graph deep learning projects. See how to get started with Spektral and have a look at the examples for some templates.
python代码实现global top-k pooling_muli-CSDN博客
https://blog.csdn.net/mr_muli/article/details/120242526
11.09.2021 · 用 python 实现大小堆 & Top K 问题 python的 heapq 模块提供了堆队列(优先队列)的实现,默认是最小堆,即父节点不小于任意一个子节点 使用最小堆可以实现前 K 大的问题,原理是维护一个长度为 K 的堆,每插入一个新元素就弹出之前的最小值,从而最终只剩最大的 K 个值 如想解决前 K 小的问题,则 ...
k-max-pooling的keras实现_摆渡人生-CSDN博客_keras pooling
https://blog.csdn.net/u010976347/article/details/80739208
19.06.2018 · 使用theano实现k-max pooling,github上目前还没有找到theano的实现,自己就写了一个简单的,仿照的是keras issues里面的一个提交。由于theano在反向bp时能够自动处理array index的变化,因此本质上是很简单的。def k_max_pooling2d(data, k): output = data[T.arange(data.shape[0]).dims
machine learning - What is K Max Pooling? How to implement ...
https://stackoverflow.com/questions/56300553
23.05.2019 · tf.nn.top_k does not preserve the order of occurrence of values. So, that is the think that need to be worked upon. import tensorflow as tf from tensorflow.keras import layers class KMaxPooling(layers.Layer): """ K-max pooling layer that extracts the k-highest activations from a sequence (2nd dimension). TensorFlow backend.
Graph Pooling
https://52paper.github.io › 20200903_rainyucao
The unsupervised loss from each layer will be added to the original training loss for the specific task. Page 13. Graph U-Nets (TopK Pool).
GitHub - pyg-team/pytorch_geometric: Graph Neural Network ...
github.com › pyg-team › pytorch_geometric
Top-K Pooling from Gao and Ji: Graph U-Nets (ICML 2019), Cangea et al.: Towards Sparse Hierarchical Graph Classifiers (NeurIPS-W 2018) and Knyazev et al.: Understanding Attention and Generalization in Graph Neural Networks (ICLR-W 2019)
池化层的几种实现方式 - 吱吱了了 - 博客园
https://www.cnblogs.com/Lee-yl/p/11175615.html
原先的Max Pooling Over Time从Convolution层一系列特征值中只取最强的那个值,那么我们思路可以扩展一下,K-Max Pooling可以取所有特征值中得分在Top –K的值,并保留这些特征值原始的先后顺序(图3是2-max Pooling的示意图),就是说通过多保留一些特征信息供后续阶段使用。
PyTorch 实现kmax-pooling - Joyce_song94 - 博客园
https://www.cnblogs.com/Joyce-song94/p/7277871.html
03.08.2017 · 1 import torch 2 def kmax_pooling (x, dim, k): 3 index = x.topk (k, dim=dim) [1].sort (dim= dim) [0] 4 return x.gather (dim, index) 5 x = torch.rand (4, 5, 6, 10 ) 6 print (x) # [torch.FloatTensor of size 4x5x6x10] 7 y = kmax_pooling (x, 3, 5) 8 print (y) # # [torch.FloatTensor of size 4x5x6x5] « 上一篇: 第四期coding_group笔记_用CRF ...
Visualization of the effect of top-k pooling. Edge points and ...
https://www.researchgate.net › figure
Download scientific diagram | Visualization of the effect of top-k pooling. Edge points and points with nonzero curvature are preserved after pooling.
MINCUT POOLING IN GRAPH NEURAL NETWORKS
https://openreview.net › pdf
Top-K is memory efficient as it avoids generating cluster assignments. To prevent A from becoming disconnected after nodes removal, Top-K drops the rows and the ...
python代码实现global top-k pooling - 代码先锋网
https://www.codeleading.com/article/99286004517
python代码实现global top-k pooling,代码先锋网,一个为软件开发程序员提供代码片段和技术文章聚合的网站。
Source code for torch_geometric.nn.pool.topk_pool - PyTorch ...
https://pytorch-geometric.readthedocs.io › ...
[docs]class TopKPooling(torch.nn.Module): r""":math:`\mathrm{top}_k` pooling operator from the `"Graph U-Nets" <https://arxiv.org/abs/1905.05178>`_, ...
torch-geometric · PyPI
pypi.org › project › torch-geometric
Oct 26, 2021 · Top-K Pooling from Gao and Ji: Graph U-Nets (ICML 2019), Cangea et al.: Towards Sparse Hierarchical Graph Classifiers (NeurIPS-W 2018) and Knyazev et al.: Understanding Attention and Generalization in Graph Neural Networks (ICLR-W 2019)