torch.rand — PyTorch 1.11.0 documentation
pytorch.org › docs › stabletorch.rand. torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor. Returns a tensor filled with random numbers from a uniform distribution on the interval. [ 0, 1) [0, 1) [0,1) The shape of the tensor is defined by the variable argument size. Parameters.
torch.randint — PyTorch 1.11.0 documentation
pytorch.org › docs › stabletorch.randint. torch.randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor. Returns a tensor filled with random integers generated uniformly between low (inclusive) and high (exclusive). The shape of the tensor is defined by the variable argument size.
torch.random — PyTorch 1.11.0 documentation
pytorch.org › docs › stableThis is a convenience argument for easily disabling the context manager without having to delete it and unindent your Python code under it. torch.random. get_rng_state [source] ¶ Returns the random number generator state as a torch.ByteTensor. torch.random. initial_seed [source] ¶ Returns the initial seed for generating random numbers as a ...
Sampling with replacement - PyTorch Forums
03.10.2018 · That being said, I’ve altered your code to make it a regression problem with more values >0.9 than <0.9 and it seems to sample in an unbalanced way now: numDataPoints = 1000data_dim = 5bs = 100# Create …
Torch equivalent of numpy.random.choice? - PyTorch Forums
https://discuss.pytorch.org/t/torch-equivalent-of-numpy-random-choice/1614609.04.2018 · b = np.random.choice(a, p=p, size=n, replace=replace) In pytorch you can use torch.multinomial: a = torch.tensor([1, 2, 3, 4]) p = torch.tensor([0.1, 0.1, 0.1, 0.7]) n = 2 replace = True idx = p.multinomial(num_samples=n, replacement=replace) b = a[idx] Careful, np.random.choice defaults to replace=True But torch.multinomial defaults to replacement=False