Du lette etter:

torch random integer without replacement

Random Choice with Pytorch? - python - Stack Overflow
https://stackoverflow.com › rando...
To do it without replacement: Shuffle the index; Take the n first elements. indices = torch.randperm(len(pictures))[: ...
Deep Reinforcement Learning in Action
https://books.google.no › books
The idea is to employ mini-batching by storing past experiences and then using a random subset of these experiences to update the Q-network, ...
python - Random Choice with Pytorch? - Stack Overflow
https://stackoverflow.com/questions/59461811
22.12.2019 · The alternative is indexing with a shuffled index or random integers. To do it with replacement: Generate n random indices; Index your original tensor with these indices ; pictures[torch.randint(len(pictures), (10,))] To do it without replacement: Shuffle the index; Take the n first elements; indices = torch.randperm(len(pictures))[:10] pictures[indices]
torch.rand — PyTorch 1.11.0 documentation
pytorch.org › docs › stable
torch.rand. torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor. Returns a tensor filled with random numbers from a uniform distribution on the interval. [ 0, 1) [0, 1) [0,1) The shape of the tensor is defined by the variable argument size. Parameters.
torch.randint — PyTorch 1.11.0 documentation
pytorch.org › docs › stable
torch.randint. torch.randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor. Returns a tensor filled with random integers generated uniformly between low (inclusive) and high (exclusive). The shape of the tensor is defined by the variable argument size.
torch.random — PyTorch 1.11.0 documentation
pytorch.org › docs › stable
This is a convenience argument for easily disabling the context manager without having to delete it and unindent your Python code under it. torch.random. get_rng_state [source] ¶ Returns the random number generator state as a torch.ByteTensor. torch.random. initial_seed [source] ¶ Returns the initial seed for generating random numbers as a ...
Sampling with replacement - PyTorch Forums
03.10.2018 · That being said, I’ve altered your code to make it a regression problem with more values >0.9 than <0.9 and it seems to sample in an unbalanced way now: numDataPoints = 1000data_dim = 5bs = 100# Create …
VGG on Food Random Subset (Torch) | Kaggle
https://www.kaggle.com › output
VGG on Food Random Subset (Torch). Python · Food Images (Food-101) ... kaggle kernels output kmader/vgg-on-food-random-subset-torch -p /path/to/dest.
Torch equivalent of numpy.random.choice? - PyTorch Forums
https://discuss.pytorch.org/t/torch-equivalent-of-numpy-random-choice/16146
09.04.2018 · b = np.random.choice(a, p=p, size=n, replace=replace) In pytorch you can use torch.multinomial: a = torch.tensor([1, 2, 3, 4]) p = torch.tensor([0.1, 0.1, 0.1, 0.7]) n = 2 replace = True idx = p.multinomial(num_samples=n, replacement=replace) b = a[idx] Careful, np.random.choice defaults to replace=True But torch.multinomial defaults to replacement=False
torch、(三) Random sampling - CodingNote.cc
https://codingnote.cc › ...
Returns the random number generator state as a torch. ... When drawn without replacement, num_samples must be lower than number of non-zero elements in ...
5 Different Approach to Generate Random Tensor Samples ...
https://medium.com › journey-to-p...
1) Replacement for NumPy to use the power of GPUs ... torch.randint() is useful when we want to generate a random integer from an inclusive ...
python - Random Choice with Pytorch? - Stack Overflow
stackoverflow.com › questions › 59461811
Dec 23, 2019 · torch.multinomial provides equivalent behaviour to numpy's random.choice (including sampling with/without replacement): # Uniform weights for random draw unif = torch.ones (pictures.shape [0]) idx = unif.multinomial (10, replacement=True) samples = pictures [idx] samples.shape >>> torch.Size ( [10, 28, 28, 3]) Share Improve this answer
Torch equivalent of numpy.random.choice? - PyTorch Forums
discuss.pytorch.org › t › torch-equivalent-of-numpy
Apr 09, 2018 · You could generate a random number between 0 and the size of the outer dimension of your tensor, and then use that to index into your tensor. We don’t have a built-in function like numpy.random.choice.
torch.rand — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.rand.html
Returns a tensor filled with random numbers from a uniform distribution on the interval [0, 1) [0, 1) [0, 1) The shape of the tensor is defined by the variable argument size. Parameters. size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
Implement numpy.random.choice equivalent #16897 - GitHub
https://github.com › pytorch › issues
It includes CPU and CUDA implementations of: Uniform Random Sampling WITH Replacement (via torch::randint ); Uniform Random Sampling WITHOUT ...
Torch equivalent of numpy.random.choice? - PyTorch Forums
https://discuss.pytorch.org › torch-...
Thanks! Actually I wanted to draw k samples, and without replacement, so I ended up doing : perm = torch.randperm(tensor.size ...
torch、(三) Random sampling - 云+社区- 腾讯云
https://cloud.tencent.com › article
torch.bernoulli (input, *, generator=None, out=None) → Tensor. Draws binary random numbers (0 or 1) from a Bernoulli distribution.
torch.randint — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.randint.html
generator (torch.Generator, optional) – a pseudorandom number generator for sampling. out (Tensor, optional) – the output tensor. dtype (torch.dtype, optional) – if None, this function returns a tensor with dtype torch.int64. layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.
Select k random rows without replacement - PyTorch Forums
discuss.pytorch.org › t › select-k-random-rows
Dec 29, 2017 · Select k random rows without replacement. ... selecting a fixed number of rows? smth December 29, 2017, 2:56pm #2. prob something using torch.bernoulli will be ...