numpy.swapaxes — NumPy v1.22 Manual
numpy.org › generated › numpynumpy.swapaxes(a, axis1, axis2) [source] ¶ Interchange two axes of an array. Parameters aarray_like Input array. axis1int First axis. axis2int Second axis. Returns a_swappedndarray For NumPy >= 1.10.0, if a is an ndarray, then a view of a is returned; otherwise a new array is created.
numpy中transpose和swapaxes函数讲解_ML_BOY的博客-CSDN博客_swapaxes
https://blog.csdn.net/qq1483661204/article/details/7054395223.04.2017 · transpose和swapaxes函数讲解 transpose () 这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数。 我们看如下一个numpy的数组: `arr=np.arange (16).reshape ( (2,2,4)) arr= array ( [ [ [ 0, 1, 2, 3], [ 4, 5, 6, 7]], [ [ 8, 9, 10, 11], [12, 13, 14, 15]]]) ` 那么有:
Swap axes in pytorch? - PyTorch Forums
https://discuss.pytorch.org/t/swap-axes-in-pytorch/97009.03.2017 · fmassa (Francisco Massa) March 9, 2017, 2:37pm #5 @Veril transpose only applies to 2 axis, while permute can be applied to all the axes at the same time. For example a = torch.rand (1,2,3,4) print (a.transpose (0,3).transpose (1,2).size ()) print (a.permute (3,2,1,0).size ()) BTW, permute internally calls transpose a number of times 23 Likes
torch.transpose — PyTorch 1.11.0 documentation
pytorch.org › docs › stabletorch.transpose torch.transpose(input, dim0, dim1) → Tensor Returns a tensor that is a transposed version of input . The given dimensions dim0 and dim1 are swapped. If input is a strided tensor then the resulting out tensor shares its underlying storage with the input tensor, so changing the content of one would change the content of the other.