Du lette etter:

torch tensor

Creating a Tensor in Pytorch - GeeksforGeeks
https://www.geeksforgeeks.org/creating-a-tensor-in-pytorch
04.07.2021 · All the deep learning is computations on tensors, which are generalizations of a matrix that can be indexed in more than 2 dimensions. Tensors can be created from Python lists with the torch.tensor() function. The tensor() Method: To create tensors with Pytorch we can simply use the tensor() method:
torch.tensor — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
Constructs a tensor with data . ... torch.tensor() always copies data . If you have a Tensor data and want to avoid a copy, use torch.Tensor.requires_grad_() or ...
Tensor Operations in PyTorch - GeeksforGeeks
https://www.geeksforgeeks.org/tensor-operations-in-pytorch
04.01.2022 · torch is the module; tensor is the function; elements are the data. The Operations in PyTorch that are applied on tensor are: expand() This operation is used to expand the tensor into a number of tensors, a number of rows in tensors, and a number of columns in tensors.
torch.Tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/tensors
A tensor can be constructed from a Python list or sequence using the torch.tensor () constructor: torch.tensor () always copies data. If you have a Tensor data and just want to change its requires_grad flag, use requires_grad_ () or detach () to avoid a copy.
torch.ones — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.ones.html
torch.ones¶ torch. ones (*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor ¶ Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument size.. Parameters. size (int...) – a sequence of integers defining the shape of the output tensor.
torch.tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.tensor.html
Parameters. data (array_like) – Initial data for the tensor.Can be a list, tuple, NumPy ndarray, scalar, and other types.. Keyword Arguments. dtype (torch.dtype, optional) – the desired data type of returned tensor.Default: if None, infers data type from data.. device (torch.device, optional) – the desired device of returned tensor.Default: if None, uses the current device for the ...
python - What is the difference between torch.tensor and ...
https://stackoverflow.com/questions/51911749
17.08.2018 · So all tensors are just instances of torch.Tensor. When you call torch.Tensor () you will get an empty tensor without any data. In contrast torch.tensor is a function which returns a tensor. In the documentation it says: torch.tensor (data, dtype=None, device=None, requires_grad=False) → Tensor. Constructs a tensor with data.
Introduction to PyTorch Tensors
https://pytorch.org › introyt › tens...
Tensors are the central data abstraction in PyTorch. This interactive notebook provides an in-depth introduction to the torch.Tensor class.
torch.Tensor.prod — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.Tensor.prod.html
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies.
Pytorch基础--torch.Tensor - 知乎
https://zhuanlan.zhihu.com/p/166635812
1、torch.tensor. torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False) → Tensor. (1)参数. data:data的数据类型可以是列表list、元组tuple、numpy数组ndarray、纯量scalar(又叫标量)和其他的一些数据类型。. dtype:该参数可选参数,默认为None,如果不进行设置 ...
torch.Tensor.view — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
torch.Tensor.view. Tensor. view (*shape) → Tensor. Returns a new tensor with the same data as the self tensor but of a different shape .
Tensors — PyTorch Tutorials 1.0.0.dev20181128 documentation
https://pytorch.org › tensor_tutorial
Tensors behave almost exactly the same way in PyTorch as they do in Torch. Create a tensor of size (5 x 7) with uninitialized memory: import torch a ...
torch.Tensor — PyTorch 1.10.1 documentation
https://pytorch.org › stable › tensors
A torch.Tensor is a multi-dimensional matrix containing elements of a single data type. Data types. Torch defines 10 tensor types with CPU and GPU variants ...
torch.Tensor.to — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.Tensor.to.html
torch.Tensor.to. Performs Tensor dtype and/or device conversion. A torch.dtype and torch.device are inferred from the arguments of self.to (*args, **kwargs). If the self Tensor already has the correct torch.dtype and torch.device, then self is returned. Otherwise, the returned tensor is a copy of self with the desired torch.dtype and torch.device.
torch.as_tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.as_tensor.html
torch.as_tensor¶ torch. as_tensor (data, dtype = None, device = None) → Tensor ¶ Convert the data into a torch.Tensor.If the data is already a Tensor with the same dtype and device, no copy will be performed, otherwise a new Tensor will be returned with computational graph retained if data Tensor has requires_grad=True.Similarly, if the data is an ndarray of the corresponding …
torch.Tensor — PyTorch master documentation
http://man.hubwiz.com › tensors
torch.tensor() always copies data . If you have a Tensor data and just want to change its requires_grad flag, use requires_grad_() or detach() to avoid a ...
torch — PyTorch 1.10.1 documentation
https://pytorch.org › docs › stable
The torch package contains data structures for multi-dimensional tensors and defines ... It has a CUDA counterpart, that enables you to run your tensor ...
Tensors — PyTorch Tutorials 1.10.1+cu102 documentation
https://pytorch.org › tensor_tutorial
If you're familiar with ndarrays, you'll be right at home with the Tensor API. If not, follow along in this quick API walkthrough. import torch import numpy ...
Tensor Attributes — PyTorch 1.10.1 documentation
https://pytorch.org › docs › stable
To find out if a torch.dtype is a floating point data type, the property is_floating_point can be used, which returns True if the ...