python - Index a torch tensor with an array - Stack Overflow
stackoverflow.com › questions › 61311688You may want to use torch.gather - "Gathers values along an axis specified by dim." t = torch.tensor ( [ [-0.2, 0.3], [-0.5, 0.1], [-0.4, 0.2]]) idxs = np.array ( [1,0,1]) idxs = torch.from_numpy (idxs).long ().unsqueeze (1) # or torch.from_numpy (idxs).long ().view (-1,1) t.gather (1, idxs) tensor ( [ [ 0.3000], [-0.5000], [ 0.2000]])
torch.as_tensor — PyTorch 1.10 documentation
pytorch.org › generated › torchdata (array_like) – Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar, and other types. dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, infers data type from data. device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current ...
torch.Tensor — PyTorch 1.10 documentation
https://pytorch.org/docs/stable/tensorstorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...