torch.Tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/tensorstorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...
torch — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/torch.htmlis_tensor. Returns True if obj is a PyTorch tensor.. is_storage. Returns True if obj is a PyTorch storage object.. is_complex. Returns True if the data type of input is a complex data type i.e., one of torch.complex64, and torch.complex128.. is_conj. Returns True if the input is a conjugated tensor, i.e. its conjugate bit is set to True.. is_floating_point. Returns True if the data type of ...
tensor.max()_tyler的博客-CSDN博客_tensor.max
https://blog.csdn.net/tailonh/article/details/11615521826.04.2021 · Pytoch tensor.max(x,y) 两个tensor的比较一、例子二、输出结果三、结论 写在前面 大部分博客写的基本上都是关于 torch.max(input,dim)这种基本操作,殊不知torch.max还有一种比较两个tensor大小的操作。一、例子 import torch x = torch.randn([4, 1, 2]) y = torch.randn([2, 2]) print("x",x,x.shape,"\n") print("y",y,y.shape,"\n") z =