torchvision.transforms — Torchvision 0.11.0 documentation
https://pytorch.org/vision/stable/transforms.htmlclass torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) [source] Randomly change the brightness, contrast, saturation and hue of an image. If the image is torch Tensor, it is expected to have […, 1 or 3, H, W] shape, where … means an arbitrary number of leading dimensions.
torchvision.transforms — Torchvision 0.8.1 documentation
pytorch.org › vision › 0torchvision.transforms.functional.resize (img: torch.Tensor, size: List[int], interpolation: int = 2) → torch.Tensor [source] ¶ Resize the input image to the given size. The image can be a PIL Image or a torch Tensor, in which case it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions
resized_crop — Torchvision main documentation
pytorch.org › torchvisiontorchvision.transforms.functional.resized_crop(img: torch.Tensor, top: int, left: int, height: int, width: int, size: List [int], interpolation: torchvision.transforms.functional.InterpolationMode = <InterpolationMode.BILINEAR: 'bilinear'>) → torch.Tensor [source] Crop the given image and resize it to desired size.
Python Examples of torchvision.transforms.Resize
www.programcreek.com › python › exampleorig_size = get_orig_size(dataset_name) transform = [] target_transform = [] if downscale is not None: transform.append(transforms.Resize(orig_size // downscale)) target_transform.append( transforms.Resize(orig_size // downscale, interpolation=Image.NEAREST)) transform.extend( [transforms.Resize(orig_size), net_transform]) target_transform.extend( [transforms.Resize(orig_size, interpolation=Image.NEAREST), to_tensor_raw]) transform = transforms.Compose(transform) target_transform = transforms.
Resize — Torchvision main documentation
pytorch.org › torchvisionResize¶ class torchvision.transforms. Resize (size, interpolation=<InterpolationMode.BILINEAR: 'bilinear'>, max_size=None, antialias=None) [source] ¶ Resize the input image to the given size. If the image is torch Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions