Mask-RCNNを使って、画像解析しよう。 - AI_ML_DL’s diary
ai-ml-dl.hatenablog.com › entry › 2022/01/05Jan 05, 2022 · torchvision.models.detection.maskrcnn_resnet50_ fpn (pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs) Constructs a Mask R-CNN model with a ResNet-50- FPN backbone. pretrained (bool) – If True, returns a model pre-trained on COCO train2017 コンペでは、メ モリー と計算時間が許す限り、backboneモデルを大きくしていた。
vision/mask_rcnn.py at main · pytorch/vision · GitHub
github.com › models › detection"maskrcnn_resnet50_fpn", ] class MaskRCNN ( FasterRCNN ): """ Implements Mask R-CNN. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending if it is in training or evaluation mode.