torchvision.models — Torchvision 0.8.1 documentation
pytorch.org › vision › 0torchvision.models.shufflenet_v2_x1_0(pretrained=False, progress=True, **kwargs) [source] Constructs a ShuffleNetV2 with 1.0x output channels, as described in “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design”. Parameters: pretrained ( bool) – If True, returns a model pre-trained on ImageNet.
torchvision — Torchvision 0.8.1 documentation
pytorch.org › vision › 0torchvision. This library is part of the PyTorch project. PyTorch is an open source machine learning framework. Features described in this documentation are classified by release status: Stable: These features will be maintained long-term and there should generally be no major performance limitations or gaps in documentation.
GitHub - pytorch/vision: Datasets, Transforms and Models ...
https://github.com/pytorch/visionIn case building TorchVision from source fails, install the nightly version of PyTorch following the linked guide on the contributing page and retry the install.. By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It's possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.
torchvision.transforms — Torchvision 0.11.0 documentation
pytorch.org › vision › stableclass torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) [source] Randomly change the brightness, contrast, saturation and hue of an image. If the image is torch Tensor, it is expected to have […, 1 or 3, H, W] shape, where … means an arbitrary number of leading dimensions.