U-Net for brain MRI | PyTorch
pytorch.org › hub › mateuszbuda_brain-segmentation-pModel Description. This U-Net model comprises four levels of blocks containing two convolutional layers with batch normalization and ReLU activation function, and one max pooling layer in the encoding part and up-convolutional layers instead in the decoding part. The number of convolutional filters in each block is 32, 64, 128, and 256.
torchvision.models — Torchvision 0.11.0 documentation
pytorch.org/vision/stable/models.htmlVGG¶ torchvision.models. vgg11 (pretrained: bool = False, progress: bool = True, ** kwargs: Any) → torchvision.models.vgg.VGG [source] ¶ VGG 11-layer model (configuration “A”) from “Very Deep Convolutional Networks For Large-Scale Image Recognition”.The required minimum input size of the model is 32x32. Parameters. pretrained – If True, returns a model pre-trained on ImageNet
GitHub - usuyama/pytorch-unet: Simple PyTorch ...
https://github.com/usuyama/pytorch-unet21.08.2020 · UNet/FCN PyTorch Synthetic images/masks for training Left: Input image (black and white), Right: Target mask (6ch) Prepare Dataset and DataLoader Check the outputs from DataLoader Create the UNet module Model summary Define the main training loop Training Use the trained model Left: Input image, Middle: Correct mask (Ground-truth), Rigth ...